Orthorhombic Pbca a = 9.4810(9) Å b = 19.8360(19) Å c = 13.1780(14) Å $V = 2478.3 (4) \text{ Å}^3$ Z = 8 $D_{\rm r} = 1.288 {\rm Mg m}^{-3}$ D_m not measured

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: none 2306 measured reflections 2174 independent reflections 1528 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.135$ S = 0.9512174 reflections 176 parameters H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Cell parameters from 25 reflections $\theta = 13 - 15^{\circ}$ $\mu = 0.085 \text{ mm}^{-1}$ T = 296 KPrism $0.50 \times 0.25 \times 0.22$ mm Yellow

 $R_{\rm int} = 0.012$ $\theta_{\rm max} = 24.97^{\circ}$ $h = 0 \rightarrow 11$ $k = -23 \rightarrow 1$ $l = 0 \rightarrow 15$ 3 standard reflections frequency: 60 min intensity decay: 0.5%

 $(\Delta/\sigma)_{\rm max} = 0.011$ $\Delta \rho_{\rm max} = 0.139 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.166 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0073 (16) Scattering factors from International Tables for Crystallography (Vol. C)

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1463). Services for accessing these data are described at the back of the journal.

References

- Baglen, F. G., Bush, S. F. & Durig, J. R. (1967). J. Chem. Phys. 47. 2104-2109.
- Enraf-Nonius (1993). CAD-4/PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
- Hamilton, W. C. & La Placa, S. J. (1968). Acta Cryst. B24, 1147-1156.
- Harms, K. & Wocadlo, S. (1996). XCAD4. Program for the Lp Correction of Enraf-Nonius Four-Circle Diffractometer Data. University of Marburg, Germany.
- Kubota, S., Kirino, O., Koida, Y. & Miyake, K. (1972). J. Pharm. Soc. Jpn, 92, 275-279.
- Lumme, P. O., Mutikainen, I. & Elo, H. O. (1986). Acta Cryst. C42. 1209-1211.
- Mutikainen, I., Elo, H. O. & Lumme, P. O. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 291-293.
- Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1992). PLATON92 and PLUTON92. Programs for Molecular Geometry Calculations. University of Utrecht, The Netherlands.
- Watson, K. M. & Neilson, D. G. (1975). The Chemistry of the Amidines and Imidates, edited by S. Patai, p. 494. London: Wiley.

Acta Cryst. (1998). C54, 1925-1927

1,9a-Epoxy-1,2,3,4,4a,4b,5,8,8a,9a-decahydro-2-methyl-4-nitro-5,8-methano-9Hfluoren-9-one

HOONG-KUN FUN," KANDASAMY CHINNAKALI,"[†] NIRMAL Kumar Hazra,^b Dipakranjan Mal,^b Gur Dayal NIGAM^C AND IBRAHIM ABDUL RAZAK^a

^aX-rav Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Indian Institute of Technology, Kharagpur 721 302, West Bengal, India, and 'Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721 302, West Bengal, India. E-mail: hkfun@usm.my

(Received 13 March 1998; accepted 28 May 1998)

Abstract

The six-membered ring of the title compound, C₁₅H₁₇NO₄, adopts a half-chair conformation, and the

		0	
Toble 1 Salastad	acometric parameters	11	01
Table 1. Selected	geometric parameters	(71,	

N1N11	1.4045 (18)	N12-C13	1.345 (2)
N1-C3	1.2956 (19)	C13C14	1.486 (2)
N2-C3	1.343 (2)	C14C19	1.383 (2)
N11-C13	1.2982 (19)		
N11-N1-C3	111.55 (12)	N1-C3-N2	125.94 (15)
N1-N11-C13	112.02 (12)	N11-C13-N12	124.92 (15)
C3-N1-N11-C13	173.53 (13)	N12-C13-C14-N15	16.6 (2)
N2C3C4N5	2.9 (2)		

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D = H \cdots A$
N2—H2B···N15 ¹	0.89 (2)	2.24 (2)	3.073 (2)	154.9 (17)
$N12 - H12B \cdot \cdot \cdot N11^{n}$	0.89 (2)	2.262 (19)	3.0918 (19)	154.8 (17)
Symmetry codes: (i)	$x = \frac{1}{2}, y, \frac{3}{2}$	$-z;$ (ii) $\frac{1}{2}$ +	$x, y, \frac{3}{2} - z$	

Data collection: CAD-4/PC (Enraf-Nonius, 1993). Cell refinement: CAD-4/PC. Data reduction: XCAD4 (Harms & Wocadlo, 1996). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: PLU-TON92 and PLATON92 (Spek, 1992). Software used to prepare material for publication: SHELXL97.

Thanks are extended to Dr K. M. Watson for the gift of the title compound.

[†] On leave from: Department of Physics. Anna University, Chennai 600 025, India

methyl and nitro groups are attached equatorially to it. The five-membered ring fused to it is in a flattened envelope conformation. In the norbornene ring system, the six-membered ring adopts a fairly symmetrical boat conformation and the two five-membered rings formed by the bridging C atom adopt envelope conformations. The mean plane through the fused five-membered ring forms dihedral angles of 31.14(5) and $84.28(7)^\circ$ with the mean planes of the adjacent six-membered rings.

Comment

The cis-hydrindane carbon skeleton is found to occur in many bioactive sesquiterpenoids and steroids (Corey & Cheng, 1989). It is also used as a synthon for the synthesis of a wide range of natural products (Ho, 1988). Though a number of methodologies for the synthesis of *cis*-hydrindane exist in the literature, the preparation of stereo-defined substituted hydrindanes poses a considerable challenge to the synthetic chemists. We have recently developed a methodology for the stereocontrolled fabrication of cis-hydrindanes (Mal & Hazra, 1998). This route has vielded the precursor fluorenone, in which a cis-hydrindane structure is embedded. Although NMR study of the title compound, (I), revealed the relative stereochemistry of the substituents of ring A, their orientation with respect to ring C could not be ascertained. As a result, the X-ray structure analysis was undertaken to deduce the full stereostructure of the compound.

The bond lengths observed in this structure show normal values (Allen et al., 1987); C9-C10 shows double-bond character. The six-membered ring A adopts a half-chair conformation, with asymmetry parameter $\Delta C_2(C2-C1) = 0.0058(8)$; the methyl and nitro groups are attached equatorially to it. The fused fivemembered ring (B) adopts a flattened envelope conformation $[\Delta C_s(C5) = 0.0019(8)]$, with C5 deviating from the C6-C7-C12-C13 plane by 0.141 (2) Å. The sixmembered ring (C) of the norbornene ring system is a fairly symmetrical boat. The mean plane through the fused five-membered ring forms dihedral angles of 31.14(5) and $84.28(7)^{\circ}$ with the mean planes of the adjacent six-membered rings. The epoxy plane is inclined at an angle of $73.10(7)^{\circ}$ with respect to the attached A ring and the nitro group is twisted by $47.6(1)^{\circ}$. The mean planes through rings A and C form a dihedral angle of $59.08(7)^\circ$. The geometry of the norbornene ring system is the same, within experimental w

error, as other norbornene systems (Beddoes *et al.*, 1993; Dvorkin *et al.*, 1987). The crystal structure is stabilized by van der Waals interactions.

Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Experimental

Tricyclo[$5.2.1.0^{2.6}$]deca-3.8-dien-5-one was treated with nitromethane in the presence of 1.8-diazabicyclo[5.4.0]undecene (DBU) to give an oil, which was subsequently treated with methacrolein, again in the presence of DBU, to give 2.3.4.4a.4b.5.8.8a-octahydro-2-methyl-4-nitro-5.8-methano-9H-fluoren-9-one. This was then epoxidized to give the title compound, which was crystallized from ethanol by cooling to 258 K.

Crystal data	
C ₁₅ H ₁₇ NO ₄ $M_r = 275.30$ Monoclinic $P2_1/c$ a = 11.5320 (2) Å b = 11.2967 (2) Å c = 10.3406 (2) Å $\beta = 96.312 (1)^\circ$ $V = 1338.94 (4) Å^3$ Z = 4 $D_x = 1.366 \text{ Mg m}^{-3}$ D_m not measured	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 4864 reflections $\theta = 1.5-33.0^{\circ}$ $\mu = 0.099 \text{ mm}^{-1}$ T = 293 (2) K Block $0.48 \times 0.40 \times 0.28 \text{ mm}$ Colourless
Data collection	

Siemens SMART CCD area- detector diffractometer ω scans Absorption correction: none 8611 measured reflections 3057 independent reflections	2334 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 27.5^{\circ}$ $h = -14 \rightarrow 14$ $k = 0 \rightarrow 14$ $l = 0 \rightarrow 13$

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.048$	$\Delta \rho_{\rm max} = 0.249 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.132$	$\Delta \rho_{\rm min} = -0.190 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction: none

International Tables for

Crystallography (Vol. C)

Scattering factors from

S = 1.0543056 reflections 249 parameters All H atoms refined $w = 1/[\sigma^2(F_o^2) + (0.0610P)^2 + 0.3308P]$ where $P = (F_o^2 + 2F_o^2)/3$

Table 1. Selected bond lengths (Å)

OIC6	1.215 (2)	04—N1	1.205 (2)
O2C5	1.450 (2)	N1C1	1.519 (2)
O2—C4	1.452 (2)	C4C5	1.470 (2)
03—N1	1.202 (2)	C9C10	1.321 (3)

The data collection covered a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different φ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω . The crystal-to-detector distance was 4 cm and the detector swing angle was -35° . Coverage of the unique set is over 99% complete. Crystal decay was monitored by repeating 30 initial frames at the end of data collection and analysing the duplicate reflections; it was found to be negligible. The structure was solved by direct methods and refined by full-matrix least-squares techniques. All H atoms were located from a difference Fourier map and refined isotropically.

Data collection: *SMART* (Siemens, 1996c). Cell refinement: *SAINT* (Siemens, 1996a). Data reduction: *SAINT*. Program(s) used to solve structure: *SHELXTL* (Siemens, 1996b). Program(s) used to refine structure: *SHELXTL*. Molecular graphics: *SHELXTL*. Software used to prepare material for publication: *SHELXTL* and *PARST* (Nardelli, 1995).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Post-doctoral Fellowship. NKH is grateful to the Department of Science and Technoloy, New Delhi, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HA1220). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Beddoes, R. L., Gorman, A. A. & McNeeney, S. P. (1993). Acta Cryst. C49, 1811–1813.
- Corey, E. J. & Chang, X. M. (1989). In The Logic of Chemical Synthesis. New York: Wiley.
- Dvorkin, A. A., Gifeysman, T. S., Simonov, Y. A., Malinovsky, T. I., Andronati, S. A., Bondarev, M. L. Yarorsky, A. S. (1987). Acta Cryst. C43, 2347–2350.
- Ho, T. L. (1988). In Carbocyclic Construction in Terpene Synthesis. New York: VCA.
- Mal, D. & Hazra, N. (1998). Unpublished work.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Siemens (1996a). SAINT Software Reference Manual. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

© 1998 International Union of Crystallography

Printed in Great Britain - all rights reserved

Siemens (1996b). SHELXTL Reference Manual. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996c). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 1927-1929

2-(2-Hydroxybenzylidene)-1-(2-picoloyl)hydrazine Hemihydrate

ZUOXIANG WANG, FANGFANG JIAN, CHUNYING DUAN, ZHIPING BAI AND XIAOZENG YOU

Coordination Chemistry Institute & State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China. E-mail: ccinu@netra. nju.edu.cn

(Received 10 October 1997; accepted 26 February 1998)

Abstract

In the title compound [2-hydroxybenzaldehyde 2-pyridylcarbonylhydrazone hemihydrate, $C_{13}H_{11}N_3O_2$.- $0.5H_2O$ or (1). $0.5H_2O$], molecules of (1) are linked pairwise through intermolecular N—H···N hydrogen bonds. These pairs alternate with hydrogen-bonded water molecules to form one-dimensional chains.

Comment

Compared to simple hydrazone Schiff bases, acyl, aroyl and heteroaroyl Schiff bases have an additional Odonor atom from the carbonyl group, whose presence introduces a wider range of properties (Dutta & Hossain, 1985). These compounds may therefore function as polydentate ligands and some reports of their complexes have appeared (Dutta & Sarkar, 1981; Aggarwal *et al.*, 1981; Dutta & Das, 1985).

Molecules of (1) are essentially planar [r.m.s. deviation from the least-squares mean plane is only 0.051(7)Å]. The $01\cdots N1$ separation of 2.669(8)Å, which is less than the sum of the corresponding van der Waals radius sum (2.85Å), suggests a possible

intramolecular hydrogen bond, as does the O1— $H1\cdots N1$ bond angle of 144.9 (5)°. Molecules of (1) are linked into pairs by intermolecular N2— $H2\cdots N3^{i}$ hydrogen bonds (Fig. 1) [N2 \cdots N3ⁱ 3.116 (5) Å and

Acta Crystallographica Section C ISSN 0108-2701 © 1998